Analysis 2, Summer 2024 List 5 Review for Exam 1

- 123. Describe the top half of the circle $x^2 + y^2 = 12$ using parametric equations (or a single vector equation $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$) and a range of t values.
- 124. Calculate $\int_C \cos\left(\frac{\pi y^2}{x}\right) ds$, where C is the line segment from (0,0) to (6,1).
- 125. Calculate $\iint_D e^{xy} dA$ where $D = \{(x, y) : 1 \le y \le 8, 0 \le x \le \frac{1}{y}\}.$
- 126. Calculate $f'_{\hat{u}}(0,2)$ where $f(x,y) = \sin(x^2 + \pi y)$ and \hat{u} is parallel to $\begin{bmatrix} \sqrt{17} \\ 8 \end{bmatrix}$.
- 127. Find the critical point(s) of $f(x,y) = x^2y 5x^2 4xy + 20x$.
- 128. Find and classify the critical point(s) of $f(x, y) = \ln(-x/y) + ye^x$.
- 129. Find the unit vector $\hat{u} = [u_1, u_2, u_3]$ such that the rate of change of

$$f(x, y, z) = xz^2 - 11\sin(y) + x$$

at (5, 0, 1) is as large as possible in the direction \hat{u} .

- 130. Find and classify the critical point(s) of $f(x, y) = x^2 10x + 13 + 4y + y^2$.
- 131. For $f(x, y) = x \ln(xy)$ at the point $(3, \frac{1}{3})$,
 - (a) in what direction(s) is $f'_{\hat{u}}(3, \frac{1}{3})$ as large as possible?
 - (b) what is the value of $f'_{\hat{u}}(3, \frac{1}{3})$ for the direction from part (a)?
 - (c) in what direction(s) is $f'_{\hat{u}}(3, \frac{1}{3})$ as small (most negative) as possible?
 - (d) what is the value of $f'_{\hat{u}}(3, \frac{1}{3})$ for the direction from part (c)?
 - (e) in what direction(s) is $f'_{\hat{u}}(3, \frac{1}{3})$ equal to zero?

132. Let *D* be the region
$$\{(x, y) : -\sqrt{1 - y^2} \le x \le 0\}$$
.
(a) Draw this region.
(b) Fill in the blanks $\iint_D f \, dA = \int_{\square}^{\square} \int_{\square}^{\square} f \, dx \, dy$.
(c) Fill in the blanks $\iint_D f \, dA = \int_{\square}^{\square} \int_{\square}^{\square} f \, dy \, dx$.
 $\stackrel{\text{red}}{\approx} (d)$ Fill in the blanks $\iint_D f \, dA = \int_{\square}^{\square} \int_{\square}^{\square} f \, r \, dr \, d\theta$.
 $\stackrel{\text{red}}{\approx} (e)$ Calculate $\iint_D \frac{e^{x^2 + y^2}}{\pi} \, dA$.

Double integrals in "polar coordinates" are not part of MAT 1510, so you will not need to do 132(d) or 132(e) on quizzes or exams in this course.

- 133. Let R be the triangle with vertices (0,0), (-6,6), and (6,6), and let the density within this triangle be $\rho(x,y) = y + 1$.
 - (a) Evaluate $\iint_R (y+1) \, dA$. (This is the mass of the triangle.)
 - (b) Evaluate $\iint_R (y+1)x \, dA$. (c) Evaluate $\iint_R (y+1)y \, dA$.

(d) The center of mass of the triangle has coordinates $\left(\frac{\text{answer}(b)}{\text{answer}(a)}, \frac{\text{answer}(c)}{\text{answer}(a)}\right)$. Find this point.

- 134. For the function $f(x, y) = y \ln(x)$,
 - (a) Give the gradient vector ∇f at the point (3,6).
 - (b) Give the Hessian matrix $\mathbf{H}f$ at the point (3, 6).
- 135. Give all (three) of the first partial derivatives and all (nine) of the second partial derivatives of

$$f(x, y, z) = z^2 \ln(xy) + \cos(xz).$$

- 136. If $\nabla f(x, y, z) = (3x^3 + z)\hat{i} + ze^{yz}\hat{j} + (x + ye^{yz})\hat{k}$, calculate $f''_{xx}(2, 20, -5)$.
- 137. If $\nabla g(x,y) = \begin{bmatrix} \sin(x) \\ \sin(y) \end{bmatrix}$, determine whether (0,0) is a local minimum, local maximum, or saddle point of g(x,y).
- 138. For the function $f(x, y) = xy^2$ at the point (2,3),
 - (a) calculate the directional derivative $f'_{\hat{u}}(2,3)$ in the direction $\hat{u} = [0,1]$.
 - (b) calculate $f'_{\hat{u}}(2,3)$ when the angle between \hat{u} and $\nabla f(2,3)$ is 60°.
 - (c) give a formula using θ for the value of $f'_{\hat{u}}(2,3)$ when the angle between \hat{u} and $\nabla f(2,3)$ is θ .
 - (d) what is the largest possible value of $f'_{\hat{u}}(2,3)$, and for what unit vector \hat{u} does this occur?
 - (e) what is the most negative possible value of $f'_{\hat{u}}(2,3)$, and for what unit vector \hat{u} does this occur?
 - (f) give two unit vectors \hat{u} for which $f'_{\hat{u}}(2,3) = 0$.
- 139. Write the system of equations that would be used to find the critical point(s) of

$$f(x,y) = x\sin(xy^3).$$

(Do not attempt to solve the system.)

141. Which region above corresponds to $\int_1^3 \int_{y^2}^{10} \frac{x}{y} \, dx dy$?

142. For the function

$$f(x,y) = x^3 - y^x,$$

give a unit vector \hat{u} for which $f'_{\hat{u}}(3,1) = 0$.

143. Calculate
$$f'_{-\hat{j}}(3,7)$$
 for $f(x,y) = \frac{y}{\cos(x^x)}$.

144. If f(x, y) is a function for which

$$\begin{array}{ll} f(9,-1) = 5 & f(4,7) = 6 & f(8,0) = 10 \\ f'_x(9,-1) = 0 & f'_x(4,7) = 0 & f'_x(8,0) = 0 \\ f'_y(9,-1) = 0 & f'_y(4,7) = 1 & f'_y(8,0) = 0 \\ f''_{xx}(9,-1) = \frac{1}{2} & f''_{xx}(4,7) = 2 & f''_{xx}(8,0) = -6 \\ f''_{xy}(9,-1) = \sqrt{2} & f''_{xy}(4,7) = 18 & f''_{xy}(8,0) = 0 \\ f''_{yy}(9,-1) = 12 & f''_{yy}(4,7) = 3 & f''_{yy}(8,0) = -3 \end{array}$$

- (a) is (9, -1) a local minimum, local maximum, saddle, or none of these?
- (b) is (4,7) a local minimum, local maximum, saddle, or none of these?
- (c) is (8,0) a local minimum, local maximum, saddle, or none of these?
- (d) give a vector that is perpendicular to the level curve f(x, y) = 6 at the point (4, 7).

145. Give the Hessian $\mathbf{H}f(x,y)$ of the function f(x,y) for which $\nabla f = \begin{bmatrix} e^{xy}(xy+1) \\ x^2 e^{xy} \end{bmatrix}$.

 $\stackrel{\text{tr}}{\approx}$ 146. Give an example of a function f(x,y) for which $\nabla f = \begin{bmatrix} 2x + y^2 e^{xy^2} \\ 2xy e^{xy^2} + 9y^2 \end{bmatrix}$.

147. Re-write $\int_0^{\sqrt{3}} \int_x^{\sqrt{3}x} \frac{y}{x^3 + y^2 x} \, \mathrm{d}y \, \mathrm{d}x \ + \ \int_{\sqrt{3}}^3 \int_x^3 \frac{y}{x^3 + y^2 x} \, \mathrm{d}y \, \mathrm{d}x$

as a single iterated integral.

- 148. Find the value of $\iint_D \frac{25x^4}{y} dA$ where D is the triangle with vertices (1,1) and (4,4) and (1,4).
- 149. Evaluate $\int_0^6 \int_{x/2}^3 \sin(\pi y^2) \, dy \, dx$ by reversing the order of integration (that is, by changing to an equivalent integral $dx \, dy$).